REFRATECHNIK Refratechnik Steel GmbH Schiessstrasse 58 40549 Düsseldorf Germany Phone: +49 211 5858 0 Fax: +49 211 5858 49 steel@refra.com www.refra.com # Processing instructions V 3.5 **REFRAJET® NC** Note: Please read the product information sheet first, to ensure that these are the right processing instructions for your product. This document describes the application procedure for dense, cement-free **REFRAJET®** refractory gunning concretes of type **NC**. The instructions contained in this document must be complied with during processing and installation of the respective refractory concrete. Modification of or deviations from the processing instructions can lead to major problems during installation, and possibly to total failure of the installed refractory material. These instructions provide general guidelines for storage, processing, and installation of the specific refractory material. If, due to specific site conditions, it appears necessary to deviate from the procedures described here, please consult Refratechnik Steel GmbH before starting work. ### Storage - In general: Store under cool, dry, and frost-free conditions. - The shelf life stated in the product information sheet is valid from the production date, and only if storage is in accordance with our recommendations. The production date is stated on the packaging label. - Under certain circumstances, material that has been properly stored may still be usable even after expiry of the stated shelf life. In such a case, conduct a setting test with a sample before using the material. In case of doubt, the expired material can be checked by Refratechnik Steel GmbH. - Incorrect storage can greatly reduce shelf life, and can impair product quality. - However, the foil is not a substitute for storage under cover. The original pallet wrapping foil should be left intact for as long as possible to protect the product. - Also standing water, e.g. due to inadequate drainage of the storage area, can damage the material. - Stacking of the goods supplied by us (in sacks, Big Bags, etc.) is done under the sole responsibility of the shipping company or customer. Refratechnik Steel GmbH accepts no liability for possible consequential damage (damaged packaging, personal injury, etc.). # **Health and safety** - Always wear suitable safety goggles, dust mask, protective clothing, and working gloves. - Always wash thoroughly after working with the material. - Observe the information in the safety data sheet. # **General information** This product is an inorganicallychemically setting refractory concrete for gunning applications. Delivered dry in 25 kg sacks or in Big Bags, suitable equipment on site is used to convey the dry material through a hose to the gunning nozzle. In the gunning nozzle, the dry material is mixed with water before it is ejected from the nozzle at high pressure. The material is gunned exclusively onto hot surfaces (> 500 °C hot repair compound). Curing is carried out by means of applied heat. - Only use clean drinking water, as otherwise the setting behaviour may be affected. - Please take the expansion of the refractory material for your specific furnace application into account. The reversible and irreversible expansion values and the respective material properties are given in the product information sheet. Depending on the furnace operating conditions and the specific characteristics of the refractory material, any arising stresses and pressures must be compensated by suitably designed expansion joints. - During installation of the monolithic refractory material, please ensure correct anchoring to the existing furnace structure and/or to the existing or adjacent refractory material (e.g. with steel anchors, ceramic anchoring systems, etc.). - Suitable measures must be taken to ensure that the water or water vapour generated during the drying & heating up process is removed from the refractory lining without pressure build-up. - With certain furnace structures and refractory linings, the drying process can cause water or water vapour to diffuse outwards in the direction of the furnace shell instead of inwards to the hot side (furnace chamber). Therefore, suitable measures must be taken to ensure that the water or water vapour can escape to atmosphere. For this purpose, 10-mm holes drilled into the outer furnace surface (at least 5 per m2) have proved to be successful. - . In order to ensure a continuous drying process, the entire furnace chamber must always be flushed with an adequate amount of fresh air during the entire drying and heating up procedure. The air circulating in the furnace chamber may never be saturated with moisture. # **Processing** - Processing is done with suitable gunning equipment operating either with the rotor principle or a two-chamber system. Common to both processes is that they use compressed air to convey the dry mixture through hoses into a jet mixer chamber. The amount of water required for the setting process is applied to the dry material as a fine spray via a separate hose connected to the mixer nozzle. Depending on the gunning requirement, the precise amount of water is set manually by the gun operator via a control valve on the nozzle. - . The gunning unit requires a constant supply of water and air at a sufficient pressure. For this reason, separate air compressors and water pumps should be used. - · For correct operation, the gunning unit requires an air pressure of at least 7.5 bar and an air quantity of 7,5 m³/min. - The water pressure must be constant, and higher than the material pressure at the spray nozzle. Experience has shown that for short distances at ground level, a water pressure of 6 bar is sufficient. but if greater height differences must be overcome, pressures of 20...60 bar might be necessary. - In order to avoid pressure drops, the gunning unit should be positioned as close as possible to the place of installation. However, to ensure as even a flow of dry mixing material as possible, the overall length of the delivery hose should not be less than 20 m, particularly for rotor gunning units. - . The design of the nozzle mixing chamber is decisive for obtaining a homogeneous and complete wetting of the dry material in the nozzle. We recommend an 18-hole water ring with hole diameters of 1.2 mm, and a spray angle of 45° in the gunning direction. For the most precise and sensitive control of water injection possible, we recommend using a needle valve. The mixing section (distance between the water ring and the nozzle outlet) should have a length of more than 60 cm to ensure the greatest possible internal mixing. - . If possible, the diameter of the mixing section should taper down from 32 mm at the water ring to 24 mm at the nozzle outlet. - For optimum material compaction, combined with the least possible water content, and taking the spray characteristics (rebound, formation of dust etc.) into account, the gunning pressure should be as high as possible. - The distance between nozzle outlet and the surface being gunned should not greater than 1 m. Perform circular movements with the nozzle, keeping it perpendicular to the surface being - gunned. This procedure minimizes rebound and achieves a uniform material structure. - Only walls and ceilings may be gunned. If floors are gunned, the material compaction will suffer, because rebound material will inevitably be mixed in. If possible, rotate/position a floor section into an upright position. - On no account may rebound material be reused. - · Prevent layering. ### **Setting and curing** • REFRAJET® NC only sets if heat is applied. A significant increase in strength is obtained at temperatures above 800 °C. ### Drying and heating up • REFRAJET® NC is gunned exclusively onto hot surfaces (> 500 °C hot repair compound). Therefore, a separate drying and heat-up procedure is usually not necessary.